Морской Бот
Пользователь
- Регистрация
- 22.01.20
- Сообщения
- 35.032
- Реакции
- 90
- Голосов: 0
- #1
Автор: Дмитрий Сафонов
Название: Курс Data Science. Тариф Стандарт (2025)
Курс по Data Science для middle: senior-навыки за 6 недель
Подойдет для Data Scientists, Classic ML и NLP-инженеров уровня middle/middle+
Нужны базовые знания основ машинного обучения, математики и программирования
Будем писать на Python, но если ты программируешь на чем-то другом — это некритично. Вся практика будет применима на другие ЯП
В курсе осваиваем навыки, которые мешают расти мидлам
6 недель точечно закрываем каждый блок-фактор
Не просто теория, а выжимка всего опыта от TeamLead из Яндекса. Лучшие практики из BigTech,
разбор реальных бизнес-кейсов и много кода, который ты напишешь самостоятельно
разрабатываю алгоритмы антифрода рекламы, руковожу ML-командой - Яндекс
cтроил прогнозные модели биржевых индикаторов, разработал инфраструктуру для автоматизации ML-процессов - Quantum Brains
преподавал анализ данных на Python - СПБГЭУ
Тариф Стандарт.
Подробнее:
Best practices по внедрению моделей в продакшн на примере реальных задач из BigTech. Без «красивых» ML и базовых методов — только грязные данные, real-time ML и ежедневные проблемы DS на работе. Преподает Team Lead в Яндекс
balun.courses
Скачать:
Этот курс доступен с подпиской: Премиум
Скачать:
Для просмотра скрытого содержимого необходимо Войти или Зарегистрироваться.
Если у Вас нет Премиум статуса:
Преимущества Премиум подписки
Оформить Вечный Премиум
Название: Курс Data Science. Тариф Стандарт (2025)
Курс по Data Science для middle: senior-навыки за 6 недель
Подойдет для Data Scientists, Classic ML и NLP-инженеров уровня middle/middle+
Нужны базовые знания основ машинного обучения, математики и программирования
Будем писать на Python, но если ты программируешь на чем-то другом — это некритично. Вся практика будет применима на другие ЯП
В курсе осваиваем навыки, которые мешают расти мидлам
- Как обнаружить проблемы в грязных данных в самом начале работы и сделать модель, устойчивую к дрейфу
- Как учесть все инфраструктурные ограничения и раскатать модель на прод с первого раза без финансовых потерь
- Как правильно мониторить деградацию моделей в проде, делать их стабильными и автоматически переобучать
- Как строить хорошие признаки по нестабильным временным рядам — активности пользователей, курсу валют и др.
- Как расти в зарплате через связку продуктовых и бизнес-метрик: увеличивать выручку и средний чек, а не техническую точность рекомендаций
- Как тестировать раскатанную ML через A/B-тесты, избегать ложных выводов и потерь у смежных бизнес-подразделений
6 недель точечно закрываем каждый блок-фактор
Не просто теория, а выжимка всего опыта от TeamLead из Яндекса. Лучшие практики из BigTech,
разбор реальных бизнес-кейсов и много кода, который ты напишешь самостоятельно
- Вводная часть
- Неделя 1. Feature Engineering, Bias и согласованность данных
- Неделя 2. Модели: оптимизация и нестандартные сценарии использования ML
- Неделя 3. Real-time ML, потоковая обработка, мониторинг и обслуживание
- Неделя 4. Feature Store, MLOps, оптимизация ресурсов
- Неделя 5. Связка продуктовых и бизнес-метрик
- Неделя 6. Дипломный проект
- Работать с «грязными» данными, искать смещения и дрифты
- Использовать Feature engineering в real time системах и генерировать признаки с пониманием вычислительной сложности
- Оптимизировать ML-модели для продакшна
- Использовать специфику актуальных ML/DL моделей для работы с табличными и текстовыми данными
- Контролировать жизненный цикл моделей в продакшне и строить мониторинги
- Работать с MLOps инструментами и взаимодействовать с инфраструктурой
разрабатываю алгоритмы антифрода рекламы, руковожу ML-командой - Яндекс
cтроил прогнозные модели биржевых индикаторов, разработал инфраструктуру для автоматизации ML-процессов - Quantum Brains
преподавал анализ данных на Python - СПБГЭУ
Тариф Стандарт.
Подробнее:
Для просмотра ссылок необходимо выполнить Вход или Регистрация
Best practices по внедрению моделей в продакшн на примере реальных задач из BigTech. Без «красивых» ML и базовых методов — только грязные данные, real-time ML и ежедневные проблемы DS на работе. Преподает Team Lead в Яндекс
Скачать:
Этот курс доступен с подпиской: Премиум
Скачать:
Для просмотра скрытого содержимого необходимо Войти или Зарегистрироваться.
Если у Вас нет Премиум статуса:
Преимущества Премиум подписки
Оформить Вечный Премиум